Word: oceaneering
(lookup in dictionary)
(lookup stats)
Dates: all
Sort By: most recent first
(reverse)
...Iron Ocean...
Sometime next year, a California start-up called Climos plans to experiment with the technique, fertilizing about 4,000 sq. mi. (about 10,000 sq km) of ocean. The goal is not to prove that the iron makes the plankton grow but to determine how much carbon this takes out of the atmosphere and for how long. "When we add iron, we create plankton blooms," says oceanographer Ken Buesseler of the Woods Hole Oceanographic Institution, who led an earlier, smaller iron-seeding test, "but a lot of that just dies and decomposes" at the surface. Only when organic matter snows...
Another part of that portfolio could focus on a component of the ocean far more plentiful than its plankton: its salt. Sea salt, like table salt, is made of sodium chloride. If you break that compound in two, you create an acid and a base. Remove some of the acid, and you change ocean chemistry in such a way that atmospheric CO2 dissolves into the water, where it is taken up in the shells of marine creatures, which fall to the seafloor and become limestone. Essentially, says Kurt House, a Harvard graduate student who came up with the idea when...
What's more, you'd be left with a lot of hydrochloric acid to get rid of on land, while the changed ocean chemistry would surely kill a lot of fish--though only, says House, in the immediate vicinity of the electrolysis plants. "I would bet against any of this happening in the next half-century," House concedes. Still, he adds, "if global warming gets really bad, we could do it." Harvard has applied for a patent on the process just in case...
...anyone uneasy about messing with the chemistry of the ocean--which is probably pretty much everyone--there is one more way to go, and it's being studied in a warehouse in Tucson, Ariz., by a company named Global Research Technologies (GRT). Developed by GRT president Allen Wright and Columbia University physicist Klaus Lackner, the system consists of 32 hanging plastic panels, each 9 ft. high and 4 ft. deep (2.7 by 1.2 m), spaced about half an inch apart. As air wafts through those spaces, CO2 sticks to the proprietary plastic the panels are made of. The device...